Step 5. Moving the line of integration.

Now we can deduce
Theorem 6.33

$$
\begin{equation*}
\int_{1}^{x} \psi(t) d t=\frac{1}{x} x^{2}+O\left(x^{2} \mathcal{E}(x)\right) \tag{40}
\end{equation*}
$$

where $\mathcal{E}(x)=\exp \left(-c \log ^{1 / 10} x\right)$ for some constant $c>0$.
Look back in the Problem Sheets where is was shown that

$$
x^{-\delta} \leq \exp \left(-c \log ^{1 / 10} x\right) \leq(\log x)^{-A},
$$

for any $\delta>0$ and $A>0$. Think of δ as small and A as large, so this says that $\mathcal{E}(x)$ tend to 0 slower than $x^{-\delta}$ however small δ might be, but tends to 0 quicker than $(\log x)^{-A}$, however large A might be.

Proof Recall the fundamental

$$
\int_{1}^{x} \psi(t) d t=\frac{1}{2} x^{2}-\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s+1} d s}{s(s+1)}+O(x),
$$

for $c>1$. With $T \geq 2$ to be chosen, truncate the integral at $\pm T$ and estimate the tail ends that are discarded by

$$
\left|\int_{c+i T}^{c+i \infty} F(s) \frac{x^{s+1} d s}{s(s+1)}\right| \leq \int_{T}^{\infty}|F(c+i t)| \frac{x^{c+1} d t}{|c+i t||c+1+i t|}
$$

Both $|c+i t|$ and $|c+1+i t| \geq|t|$ while $|F(c+i t)| \ll \log ^{9} t$, so

$$
\begin{align*}
\int_{T}^{\infty}|F(c+i t)| \frac{x^{c+1} d t}{|c+i t||c+1+i t|} & \ll x^{c+1} \int_{T}^{\infty} \frac{\log ^{9} t}{t^{2}} d t \\
& \ll \frac{x^{1+c} \log ^{9} T}{T} . \tag{41}
\end{align*}
$$

(Recall the 'trick' explored in a problem sheet of estimating such integrals by splitting at T^{2} and estimating each part separately.) In (41) choose $c=$ $1+1 / \log x$ when

$$
x^{1+c}=x^{2+1 / \log x}=x^{2} e^{\log x / \log x}=e x^{2}
$$

and the error (41) is thus $\ll x^{2} T^{-1} \log ^{9} T$. This leaves us with the integral along the vertical straight line from $c-i T$ to $c+i T$.

Next let \mathcal{C} be the contour around the rectangle with corners at $c-i T, c+i T$, $1-\delta(T)+i T$ and $1-\delta(T)-i T$, where $\delta(T)=A / \log ^{9} T$. Here A is a constant chosen sufficiently small so that

$$
\frac{A}{\log ^{9} T} \leq \frac{1}{2^{19}(\log T+6)^{9}}
$$

Then $\zeta(s)$ will have no zeros and thus $F(s)$ no poles within or on this contour. So, by Cauchy's Theorem,

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} F(s) \frac{x^{s+1} d s}{s(s+1)}=0
$$

That is

$$
\frac{1}{2 \pi i}\left(\int_{c-i T}^{c+i t}+\int_{c+i T}^{1-\delta(T)+i T}+\int_{1-\delta(T)+i T}^{1-\delta(T)-i T}+\int_{1-\delta(T)-i T}^{c-i T}\right) F(s) \frac{x^{s+1} d s}{s(s+1)}=0
$$

In both integrals over the horizontal paths, from $c+i T$ to $1-\delta(T)+i T$ and from $1-\delta(T)-i T$ to $c-i T$, we have $|s(s+1)| \geq T^{2}$. Therefore these integrals are bounded by

$$
\ll \frac{(\log T)^{9}}{T^{2}} \int_{1-\delta(T)}^{c} x^{1+\sigma} d \sigma \ll(c-1+\delta(T)) \frac{x^{1+c} \log ^{9} T}{T^{2}},
$$

simply bounding the integral by length \times largest value. This contribution is dominated by (41).
Finally we have an integral on the vertical line from $1-\delta(T)-i T$ to $1-$ $\delta(T)+i T$.
Let J_{1} be the integral of $F(s) x^{s+1} / s(s+1)$ over $|t| \leq 2$ and J_{2} the integral over $2 \leq|t| \leq T$. Then in the first integral $F(s)$ is bounded, by M, say, so

$$
\left|J_{1}\right| \leq \int_{-2}^{2} M x^{2-\delta(T)} \frac{d t}{(t+1)^{2}} \ll x^{2-\delta(T)} .
$$

While, from Corollary 6.30,

$$
J_{2} \ll \int_{2}^{T}(\log t)^{9} x^{2-\delta(T)} \frac{d t}{t^{2}} \ll x^{2-\delta(T)},
$$

since the integral over t converges. Combine all these bounds as

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s+1} d s}{s(s+1)} \ll \frac{x^{2} \log ^{9} T}{T}+x^{2-\delta(T)} . \tag{42}
\end{equation*}
$$

Choose T to equalise (or balance) these two terms up to logarithmic factors (i.e. first forget about the $\log ^{9} T$ factor), which requires $T \approx x^{\delta(T)}$. Taking logarithms,

$$
\log T \approx \frac{A \log x}{(\log T)^{9}} .
$$

i.e. $T=\exp \left(c \log ^{1 / 10} x\right)$ for some c. Then

$$
\begin{equation*}
x^{2-\delta(T)}=\frac{x^{2}}{T}=x^{2} \exp \left(-c \log ^{1 / 10} x\right) \tag{43}
\end{equation*}
$$

The other error term in (42) has the $\log ^{9} T$ factor. Yet

$$
\log ^{9} T=\left(c \log ^{1 / 10} x\right)^{9} \ll \exp \left(\varepsilon \log ^{1 / 10} x\right)
$$

for any $\varepsilon>0$ (just take logarithms of both sides to see this). Then

$$
\frac{x^{2} \log ^{9} T}{T} \leq x^{2} \exp \left(-(c-\varepsilon) \log ^{1 / 10} x\right)
$$

which is of the same form as (43) but with a slightly smaller constant c.
Collecting together we conclude that

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s+1} d s}{s(s+1)} \ll x^{2} \exp \left(-c \log ^{1 / 10} x\right),
$$

for some constant c.

